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Abstract: - Recently, orthogonal 3D tensor decompositions are widely involved in the processing of various 

kinds of 3D data such as multimedia signals, correlated image sequences, etc. The methods for tensor 

decomposition could be divided into two main groups: statistical, based on various modifications of the 

Principal Component Analysis and the Singular Value Decomposition, and deterministic, based on the 

pyramidal 3D Discrete Wavelet Transform decompositions, Curvelet/Contourlet Discrete Transform and the 

Shearlet Discrete Transform. The methods from the first group surpass these from the second in the higher 

decorrelation of the decomposition components, but these from the second group have much lower 

computational complexity. In this work are compared the structures and is evaluated the computational 

complexity of the tensor decompositions, mentioned above, with the decomposition developed by the authors, 

which is based on the Reduced 3D Inverse Spectrum Pyramid (3D-RISP). The comparison results show that: 

the global computational complexity of the 3D-RISP is much lower than that of the remaining pyramidal 

decompositions; the compared schemes for recursive calculation have similar structures but this of the RISP 

does not need operations of the kind decimation and interpolation which are the reason for distortions in the 

reconstructed tensors. 

 

Key-Words: - Deterministic pyramidal decompositions, Computational complexity, Recursive calculation, 3D 

Inverse Spectrum Pyramid, 3D Walsh-Hadamard transform 

 

 

1 Introduction 
The methods for tensor decomposition are recently 

particularly topical in the 3D data processing. 

Depending on the kind of the used orthogonal 

transforms, the methods could be divided into two 

main groups: statistical and deterministic. In the first 

case, when methods are based on the eigen-

decomposition approach, are used various 

extensions of the Principal Component Analysis 

(РСА) for higher-order data. Most famous are the 

following methods: the CANDECOMP/PARAFAC 

Decomposition (CPD), the Higher Order PCA 

(HoPCA), the Hierarchical Tucker (HT) 

decomposition, the Tensor Train PCA (TT-PCA), 

the Multilinear PCA (MPCA), the Hierarchical 

Tensor PCA (HT-PCA), the Tensor Singular Value 

Decomposition (t-SVD), etc. In this way is achieved 

very high decorrelation of the decomposition 

components, maximum energy concentration in the 

first components and minimum mean square error 

due to limitation of the used components [1,2,3]. 

The statistical methods are executed through 

iterative algorithms for calculation of eigen vectors 

which have relatively high computational 

complexity. The deterministic methods for tensor 

decomposition are based on various 3D orthogonal 

transforms (DFT, DCT, DWT, DHT, etc.) [4,5] 

through which is achieved much lower 

computational complexity at the expense of lower 

decorrelation of the decomposition components. The 

choice of a method from these two groups is 

determined of the requirements imposed by the 

needed application for 3D data processing, for 

example: hyperspectral imaging [6], high resolution 

videos [7], medical imaging (EEG, MRI, fMRI) [8], 

biometrics [9,10], chemometrics [11], social 

network analysis [12,13], etc. The main feature of 

the algorithm for the execution of each tensor 

decomposition method is its Computational 

Complexity (CC) defined by the number of needed 

mathematical operations "addition" and 
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"multiplication". They determine to a high degree 

the needed execution time and memory which 

restrict the application areas of the algorithm.          

    In this work is evaluated and compared the CC of 

tensor decompositions grounded on some basic 

methods for deterministic 3D orthogonal transforms. 

The comparison covers the following methods: the 

3D Discrete Fourier Transform (3D-DFT) 

[14,15,16]; the 3D Discrete Wavelet Transform 

(3D-DWT) [17,18,19]; pyramidal transforms with 

similar structure: 3D Curvelet and the Contourlet 

Discrete Transform (3D-CDT) [20,21,22,23] and the 

3D Shearlet Discrete Transform (3D-SDT) [24]. As 

a basis for the comparison was selected the tensor 

decomposition through 3D Inverse Spectrum 

Pyramid (3D-ISP) [25,26] with 3D Walsh-

Hadamard Transform (3D-WHT) [27,28]. In 

Sections 2-7 is given the evaluation and the 

comparative analysis of their CC. 
 

 

2 CC of tensor decomposition based 

on the 3D Discrete Fourier Transform 
For the calculation of the 3D-DFT is used the well-

known Fast Fourier Transform (FFT) [14,16]. The 

separability of 3D-DFT permits the decomposition 

of the tensor X of size NNN (N=2
m
) to be 

executed through applying 1D-DFT on each of the 

vectors which comprise the tensor: first, in direction 

x (Fig.1a), after that in direction y (Fig.1b) and 

finally - in direction z (Fig.1c) [16]. On the other 

hand, the calculation of the 1D-DFT is based on the 

Cooley-Tukey algorithm, called Fast Fourier 

Transform (FFT). After applying the radix-2 FFT 

algorithm on the N-dimensional vector, the number 

of needed operations is reduced from N
2
 to 

Nlog2N=Nm. Then, the CC of the 3D-FFT becomes 

O(Nclog2Nc), where Nc=N1N2N3.  
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Fig. 1.а,b,c. Calculation of the 3D-DFT through 

applying 1D-FFT on the vectors of the tensor X in 

three directions (x,y,z). 

    On condition that N1=N2=N3=N=2
m
, the number 

of additions needed to calculate the tensor X of N
3 

voxels is A=N
3
log2N

3
=3N

3
m and the number of 

complex multiplications is correspondingly 

M=(N/2)
3
log2N

3
=(3/8)N

3
m. 

Then, the normalized number of additions and 

complex multiplications for one voxel is: 

    m3N/AA 30
FFTD3  , m)8/3(N/MM 30

FFTD3  .      (1) 

    For the real data calculation the algorithm split-

radix 1D-FFT [17] requires (N/2)(3m-5)+4 real 

additions and (N/2)(m-3)+2 real multiplications. 

Hence, for a tensor of N
3 

voxels A=(N/2)
3
(3log2N

3
-

5)+4=(N
3
/8)(9m-5)+4 and M=(N/2)

3
(3m-3)+2= 

(3N
3
/8)(m-1)+2. Then, the normalized number of 

real additions and multiplications is: 

    
)1-m)(8/3 (N/2)+1-m)(8/3(M

),5-m9)(8/1 (N/4)+5-m9)(8/1(=A

30

FFTD3

30

FFTD3








  (2) 

 

 

3 CC of 3D-DWT in the tensor 

decomposition 
According to Mallat’s pyramid algorithm [19] the 

3D-DWT is executed through consecutive applying 

1D-DWT along columns, rows and slices of tensor 

Xp in each decomposition level (p=0,1,..,m-1). At 

that in the level p=1 the sizes of X1 (i.e. 2
m-1
2

m-1 

2
m-1

) are twice smaller than these of X0 (2
m
2

m
2

m
) 

in the level p=0 for N=2
m
, etc. The elements 

)kj,,i(x
p

 for i=0,1,..,N-1 in the row j of the slice k of 

Xp are transformed column-by-column through 1D-

DWT with 1D high-pass filters (h) of (2q+1) 

coefficients, and low-pass filters (g) of (2t+1) 

coefficients each: 

        













t

tr 1p-p

q

qr 1p-p

)kj,r,i(x)r(g)kj,i,(d

,)kj,r,i(x)r(h)kj,i,(x
  (3) 

    Here )kj,,i(x 1-p  is one element of the tensor Xp-1 

in the pyramid level (p-1). The elements )kj,,i(xp  of 

Xp calculated in accordance with Eq. (3) are 

transformed in similar way row by row for 

j=0,1,..,N-1, and after that - between the slices- for 

k=0,1,..,N-1. On Fig. 2 is shown the recursive 

scheme for 1D-DWT calculation in the pyramid 

level p=0 [17]. 

H G¯M +M
x

a

- b

 

Fig. 2. Recursive calculation of 1D-DWT (p=0) 

    For the decomposition of tensor X of size NNN 

(N=2
m
) through the 3D Wavelet Pyramid (3D-WP) 

of m levels which uses a bank of separable digital 

filters with 3 and 5 coefficients (1/2)(1,2,1) and 

(1/8)(-1,2,6,2,-1), is needed the following number of 

additions and multiplications: 

  - for p=0: A0=18N
3
;  M0=24N

3
;               

  - for p=1: A1=18N
3
(1/2

3
);  M1=24N

3
(1/2

3
); 
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  - for p : Ap=18N
3
(1/2

3p
);  Mp=24N

3
(1/2

3p
);     

  - for p=m-1: ;)2/1(N18A 3m33
1-m

  .)2/1(N24M 1m33
1-m

   

    Then, the total number of additions and 

multiplications for 3D-DWT(3,5) of m levels, is:  

    );1N(5.208N18A)m(A 31-m

0p

1m

0p

p3

pDWTD3
 







  

    )1N(4.278N24M)m(M 31m

0p

p3

p

1m

0pDWTD3
 







  

For m=2 ;1296A
1

0 p   .1726M
1

0 p   

For m levels:  ,N5.20A 31-m

0p p 
 .N4.27M 31-m

0p p 
  

In this case, the normalized number of additions and 

multiplications for one voxel is:  

4.27M
N

1
M  ,5.20A

N

1
A

1m

0p
p3

0

D-DWT3

1m

0p
p3

0

D-DWT3
 









 (4)

  

 

4 Tensor decomposition through 

multiscale pyramid and multi-

directional filter bank                         
Towards tensor decomposition methods based on the 

multiscale pyramid and multidirectional filter banks 

can also be related several transforms with similar 

structures, for example Curvelet, Contourlet and 

Shearlet Discrete Transforms [20,21,22,23]. The 

Contourlet Discrete Transform (CDT) [20] 

comprises two basic steps. In the first step is 

executed the tensor X decomposition through 

Laplacian Pyramid (LP). On Fig. 3 a,b are shown the 

schemes for tensor decomposition and reconstruction 

in one level of the LP [20].  

H GM¯

+                

M

x

a

- b

 

       a) LP analysis: the coarse approximation, a; 

        

H GM¯

+

M

b

a

+
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       b) LP reconstruction and the difference b    

          between the original signal and the prediction. 

       Fig. 3. One-level Laplacian Pyramid (LP) 

The used abbreviations are: M / M - sampling / 

interpolation matrix; H and G - analysis (low pass) 

and synthesis filters. 

    The 3D Laplacian Pyramid (3D-LP) is built in the 

frequency 3D space of the tensor transformed 

through FFT. The Fourier space is divided into 

slices and sub-bands. In the second step, on each 

sub-band is applied 3D Directional Filter Bank (3D-

DFB) of quincunx filters. For their implementation 

are used fan filters [22]. In the first step of the 3D 

Fast Discrete Curvelet Transform (3D-FDCurT) is 

used Unequally-Spaced FFT (USFFT) [23] which 

needs O(N
3
log2N) flops. The structure of the 3D 

Shearlet Discrete Transform (3D-SDT) is similar to 

that of the 3D-FDCurT.  

    The 3D-SDT algorithm comprises the following 

basic steps [24]:  

 applying 3D Odd-Frequency DFT (3D OF-

DFT) on the input image, using 3D-FFT;  

 analysis of the OF-DFT using 3D-LP filter bank 

with sub-bands;  

 applying 3D-DFB to the resulting sub-bands;  

 shearing the sub-bands: in result, the spectrum 

content of each band is placed in the frequency 

space center; 

 two dimensional sub-sampling aimed at the 

zero-DFT coefficients removal;  

 inverse 3D OF-DFT (3D IOF-DFT) 

computation of each sub-band using the inverse 3D-

FFT. 

The Direct 3D OF-DFT is defined as follows [24]: 

   
    

  (5)                                ]lkjvui)N/1-2(-[exp

)]kji()N/1-(-[expkj,i,xlv,u,s

1N

0i

1N

0j

1N

0k














    

To calculate the 3D OF-DFT for the pre-modulated 

image )]kji()N/1-(-[exp)kj,i,(x   is used 3D-FFT. 

After that, the decomposition of each sub-band is 

executed through 3D-DFB based on Meyer wavelet 

filters [24]: 

   














                                              elsewhere  ,0

;2/||4/     ,]1)/||4([ν)2/(cos

4/||                                                 ,1

)(Hi  

   














                                              elsewhere.  ,1

;2/||4/      ,]1)/||4([ν)2/(sin

;4/||                                                 ,0

)(Gi  

where i=1,2; (.) is function satisfying: v()=0 for 

≤0; v()=1 for ≥1, and v()+v(1−)=1.  

   The CC of the algorithm 3D-SDT based on 3D-LP 

of m levels in the spectrum space of the 3D-FFT is 

defined through the following relations: 

  - for the level р=0:   

     A0=2
3m+1

+32
3m

m+316(2
3m

-2
3m

/8)=2
3m

(5m+44) 

    ).6.128m()8/3()8/22(183m2)8/3(2M m3m3m3m3m3
0    

  - for the level p: Ap=2
3(m-p)

[5(m-p)+44]; 

                             Mp=(3/8)2
3(m-p)

[(m-p)+128.6].  
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    Then, the global number of additions and 

multiplications needed for the execution of 3D-SDT 

pyramid of m levels, is: 

)43m5(2]}1)m)1m)(8/1(()8/1([             

)7/8(])8/1(1[)44m5({2)7/8(AA

m31m

mm31-m

0p pSDTD3







 
                                     

m6.482]}1)8/1(m)1m(()8/1()[49/1(m6.128

])8/1(1[m)7/8({2)8/3(MM

m31-mm

mm31-m

0p pSDTD3



 
 

    In this case, for one voxel is got (6):                                          

;43m5N/AA 30
SDTD3   .m6.48N/MM 30

SDTD3



      

 

 

5 Tensor decomposition through 3D 

Inverse Spectrum Pyramid based on 

the 3D Walsh-Hadamard Transform 
The direct/inverse 3D-WHT in scalar form is 

defined in accordance with the relations [26,27]: 

   













1N

0i

1N

0j

1N

0k

)N,l,k(wal)N,v,j(wal)N,u,i(walk,i,jxl,u,vs (7) 

 for u,v,l=0,1,..,N-1 

   













1N

0u

1N

0v

1N

0l
3

)N,l,k(wal)N,v,j(wal)N,u,i(wall,vu,s
N

1
k,ji,x  (8) 

for i,j,k=0,1,..,N-1, where x(i,j,k) is one element of 

the tensor X of size NNN; s(u,v,l) is a spectrum 

coefficient which is an element of the spectrum 

tensor S, of same size; ,)1()Nw,z,(wal

1m

0r
rr w)z(q







;z)z(q , 1-m,.,1,0r forzz)z(q 1m01rmrmr  






1-m

0r

r
r2zz and 





1-m

0r

r
r 2ww for .k/lor  j/vor  i/u/wz    

     The 3D-WHT is divisible and for its calculation 

can be used multiple 1D-WHT. For the 1D Fast 

WHT (1D-FWHT) the needed number of additions 

AF is [27,28]: 

     m.2NlgN)m(A m
2F                              (9) 

    The number of addition AFT needed for the 1D 

Fast Truncated WHT (1D-FTWHT) when a 

reduction (truncation) of the output coefficients 

from N down to 2 is done, is [26]: 

     ).12(22N)m(A m
1m

0p

p

FT
 





                            (10) 

    The acceleration of the calculations for the 1D-

FTWHT compared to 1D-FWHT is defined by the 

relation: 

      2/m
)21(2

m

)m(A

)m(A
)m(R

m
FT

F
D1 





.               (11) 

The total number of AFT for the tensor of size 

NNN after 3D-FTWHT is: ].11)N(m[N2)N(A 2D3
FT   

The total number of additions needed for the 3D-

WHT is ,)1-N(N3)N(A 3D3   but for 3D-FWHT it is 

reduced to mN3)N(A 3D3
F  . Then, the normalized 

number of additions for one voxel is:  

       ]1)1m(N)[N/2(A0
FT     and   m3A0

F .         (12) 

    The acceleration of the 3D-FTWHT calculations 

compared to 3D-FWHT and 3D-WHT is 

respectively: 

       
1m

m5.1

]1)1m(N[2

mN3

A

A
)N(R

0
FT

0
F

D3





                   (13) 

        For m=4  ;2.1)16(R
D3

  

       
1m

25.1

]1)1m(N[2

)1-N(N3

A

A
)N(R

m

0
FT

0

D3






                  (14) 

        For m=4  .8.4)16(R D3   

 The decomposition of the tensor X of size 888 

through 3D-RISP pyramid of m=3 levels based on 

the Truncated 3D-WHT (3D-TWHT) is defined by 

the relation below [26]: 

          
10

~~
EEXX   for the levels p=0,1,2,         (15) 

where ,
~

0 XXE  ,)l,v,u(s)8/1(
~ 1

0u

1

0v

1

0l

l
3 

  

 v,u,WX ,
~

001
ttt

EEE              


  


1

0u

1

0v

1

0l

t
0

3
0 )l,vu,(s)4/1(

~
lu,v,

t
WE  for t=1,2,..,8;

    )8l,k,(wal)8v,j,(wal)8u,i,(walkj,i,xl,vu,s
7

0i

7

0j

7

0k


  

  

for p=0;

    )2l,,k(wal)2,vj,(wal)2u,i,(walkj,i,e~l,vu,s p-3p-3p-3
12

0i

12

0j

12

0k

t
p

t
p

p-3 p3 p-3

  
















for t=1,2,.., 8
p
 and p=1,2. 

3D-IWHT

3D-TWHT

3D-TWHT

3D-IWHT








rS
~



888 
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Level 
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)l,v,u(s   t
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)l,v,u(st
r,0
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)l,v,u(sr
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~

rX
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~
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t
0.rS

~

t
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Fig. 4. ISP structure for the decomposition of 

tensor X of size 888 
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After truncation of coefficients   00,0,0s t
p   for 

levels p=1,2 is got the 3D Reduced ISP (3D-RISP) 

[25].  

The block-diagram for tensor decomposition 

through 3D-RISP/TWHT of 3 levels is shown on 

Fig. 4. The reconstruction is implemented in reverse 

order. The orthogonal transforms (OT) used in the 

3D-RISP are statistical or deterministic [4,5]. 

                                                                

 

                                                                                      

                                                                                              

                                                                                                    RISP 
3D-TOT






3D-RISP

decomposition 

3D-IOT 

   3D 

Tensor

3D-1D

 
 

        a) Block diagram of the recursive 3D-RISP  

            decomposition 

       

            

           RISP

1D-3D

 

3D-IOT 




 3D-RISP 

reconstruction 3D 

Tensor 
 

        b) Block diagram of the recursive 3D-RISP 

            reconstruction 

   Fig. 5. Block diagrams for the recursive 3D-RISP 

On Fig. 5 a, b are shown the block diagrams for 

recursive 3D-RIDP calculation in one level of the 

pyramidal decomposition/reconstruction. In both 

cases could be used each of the mentioned OT. The 

used abbreviations are:  - Summator; 3D-TOT/3D-

IOT - 3D Truncated Direct/3D Inverse Orthogonal 

Transform; 3D-1D/1D-3D and 3D-1D/1D-3D - Data 

Dimension Transform. 

 

 

6 CC of 3D-RISP based on the Fast 

3D-WHT 

The computational complexity of the 3D-Fast 

RISP/WHT of m levels (number of 

additions/multiplications), is:  

  - for p=0: ;2m3]1)1m(2[2A m3m1m2
0       ;2M 0

0
  

  - for p:    ;2)pm(3]1)1pm(2[2A m3pmp1m2
p  

;2M p3

p
                                                                          

  - for p=m-2: ;23211A 1m31m3

2-m

   ;2M )2m(3
m

2-  

  - for p=m-1: ;23A m3
m 1-                     .0M 1-m   

    The total number of additions/multiplications for 

the Fast 3D RISP/WHT of m levels is:  

 

     };4)]7m)2/5()[1-m{(2A)m(A m31-m

0p pFRISPD3       

     ].12[)7/1(M)m(M )1-m(31m

0p pFRISPD3 


  

     The total number of additions/multiplications for 

3D-RISP/WHT of m levels is: 

     );12(23A)m(A 1m2m31-m

0p pRISPD3  

          

     ].12[)7/1(M)m(M )1-m(31m

0p pRISPD3 


  

Example for m=2: ;768A)2(A
1

0p pFRISPD3  
    

.5376A)2(A
1

0p pRISPD3  
  The acceleration of the 

3D-FRISP computation compared to 3D-RISP in 

respect of А(m) and М(m) for m=2 is:   

       .7768/5376)2(A/)2(A)2(R FRISPD3RISPD3A                 

For a tensor X of N
3
 voxels: 

32
D-FRISP 3 Nm5.2A   

and  .N)56/1(M 3
D-FRISP 3   The normalized number 

of additions/multiplications is:  

       

02.0M
N

1
M

;m5.2A
N

1
A

1m

0p

p3

0
FRISPD3

2
1m

0p

p3

0
FRISPD3





















              (16) 

 

 

7 Comparison of the CC of 3D-RIDP, 

3D-DWT, 3D-FFT and 3D-SDT 

The results of the CC comparison for algorithms 3D 

RIDP, DWT, FFT and SDT are generalized in 

Tables 1, 2 and 3. On the basis of their information 

are created the graphics on Figs. 6 and 7.  

Table 1. Acceleration R(m) of the computations for 

the Fast 3D-RISP/WHT towards Fast 3D DWT, 

FFT, SDT 

Decomposition/ 

acceleration 

A0(m) M0(m) RA(m) RM(m) 

Fast 3D-RISP 2.5m2 0.02 RA(m)=1 RM(m)=1 

Fast 3D-DWT 20.57 27.43 RA(m) = 

     8.23/m2 

   RM(m)=1371 

Fast 3D-FFT 3m (3/8)m RA(m)=1.2/m  RM(m)=18.7m 

Fast 3D-SDT 5m+43 48.6m RA(m) 

(2m+17)/m2 

 RM(m)=2430m 

 

Table 2. Comparison of RA(m) for the Fast 3D-

RISP/WHT towards Fast 3D DWT, FFT, and SDT  

RA(m)  / m  2 3 4 5 6 7 

Fast 3D-RISP 1 1 1 1 1 1 

Fast 3D-DWT 2.05 0.91 0.51 0.33 0.22 0.16 

Fast 3D-FFT 0.30 0.13 0.07 0.05 0.03 0.02 

Fast 3D-SDT 5.25 2.55 1.56 1.08 0.80 0.63 
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Fig. 6. Graphical relations of A
0
(m) for the Fast 3D 

RISP (blue), DWT (red), FFT (green), SDT (yellow) 

 

Fig. 7. Graphical relations M
0
(m) for the Fast 3D 

RISP (blue), DWT (red), FFT (green), SDT (yellow) 

Table 3. Comparison of RM(m) for the 3D Fast 

RISP/WHT towards Fast 3D DWT, FFT, and SDT  

RM(m)  / m  2 3 4 5 6 7 

Fast 3D-RISP 1 1 1 1 1 1 

Fast 3D-DWT 1371 1371 1371 1371 1371 1371 

Fast 3D-FFT 37.4 56.1 74.9 93.5 112 131 

Fast 3D-SDT 4860 7020 9720 12150 14580 17010 

The comparison of the investigated four kinds of 3D 

tensor decompositions shows that:   

 regarding the number of “additions” А
0
 (Fig. 

6): together with the growing of m, the increase of 

А
0
 is slowest for the 3D-FFT and fastest for the Fast 

3D-RISP while for the Fast 3D-DWT the 

normalized number of additions is a constant. For 

m=3 the value of А
0
 for the Fast 3D-RISP is close to 

that for the Fast 3D-SDT; 

 regarding the number of “multiplications”, М
0
 

(Fig. 7): together with the growing of m, for the Fast 

3D-RISP it has a constant value (0.02) and for the 

Fast 3D-DWT - a constant maximum value (27.4) 

while for the Fast 3D-SDT and the 3D-FFT the 

growth is linear, with different speed; 

 the structures used for the recursive calculation 

of the compared 3D orthogonal pyramidal 

transforms from Figs. 2, 3 and 5 are very close. The 

main advantage of 3D-RISP is that it does not use 

operations "decimation" and "interpolation" which 

cause distortions in the reconstructed tensors. 

    The comparison results show that the global CC 

(additions+multiplications) of the Fast 3D-RISP is 

significantly lower than that of the pyramidal 

decompositions Fast 3D-DWT and Fast 3D-SDT 

which are based on deterministic orthogonal 

transforms. 

 

 

8 Conclusions  
In this paper are analysed the schemes for recursive 

calculation and the computational complexity of the 

Fast 3D-RISP/WHT towards the deterministic 

transforms Fast 3D-DWT and Fast 3D-SDT used for 

the pyramidal tensor decomposition. The so 

obtained results show the higher efficiency of the 

Fast 3D-RISP in the general computational 

complexity as well as in the structures for recursive 

calculation. These qualities of the 3D-RISP open 

various possibilities for its application in areas 

where the lower computational cost is of high 

significance.  
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